Spectral gaps for hyperbounded operators
نویسندگان
چکیده
منابع مشابه
Eigenvalues in Spectral Gaps of Differential Operators
Spectral problems with band-gap spectral structure arise in numerous applications, including the study of crystalline structure and the determination of transmitted frequencies in photonic waveguides. Numerical discretization of these problems can result in spurious results, a phenomenon known as spectral pollution. We present a method for calculating eigenvalues in the gaps of self-adjoint ope...
متن کاملSpectral Gaps for Periodic Schrödinger Operators with Hypersurface Magnetic Wells
We consider a periodic magnetic Schrödinger operator on a noncompact Riemannian manifold M such that H(M, R) = 0 endowed with a properly discontinuous cocompact isometric action of a discrete group. We assume that there is no electric field and that the magnetic field has a periodic set of compact magnetic wells. We review a general scheme of a proof of existence of an arbitrary large number of...
متن کاملSpectral Gaps for Periodic Schrödinger Operators with Strong Magnetic Fields
We consider Schrödinger operators H = (ih d + A)∗(ih d + A) with the periodic magnetic field B = dA on covering spaces of compact manifolds. Under some assumptions on B, we prove that there are arbitrarily large number of gaps in the spectrum of these operators in the semiclassical limit of strong magnetic field h → 0.
متن کاملThe Periodic Magnetic Schrödinger Operators: Spectral Gaps and Tunneling Effect
A periodic Schrödinger operator on a noncompact Riemannian manifold M such that H1(M, R) = 0 endowed with a properly discontinuous cocompact isometric action of a discrete group are considered. Under some additional conditions on the magnetic field existence of an arbitrary large number of gaps in the spectrum of such an operator in the semiclassical limit is established. The proofs are based o...
متن کاملSpectral gaps of Schrödinger operators with periodic singular potentials
By using quasi–derivatives we develop a Fourier method for studying the spectral gaps of one dimensional Schrödinger operators with periodic singular potentials v. Our results reveal a close relationship between smoothness of potentials and spectral gap asymptotics under a priori assumption v ∈ H loc (R). They extend and strengthen similar results proved in the classical case v ∈ L loc (R).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2020
ISSN: 0001-8708
DOI: 10.1016/j.aim.2019.106958